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Abstract— Robots are employed in variety of applications and 
are available in a wide range of configurations. The need to 
respond to the environment without using the nervous system’s 
efferent pathways has initiated a new interaction system that can 
boost and speed up the human sensor-effector system. To 
maximize human and machine interaction, Human Threading TM 
technique has been developed to merge the observations made in 
human cognitive system, neuro-anatomical structures, finite state 
machines and their associated relationships.  
 
The Brain-Computer Interface (BCI) is used to create a robust 
communication system that can interpret human intentions and 
cognitive emotions reflected by appropriate brain signals into 
control signals for robotic manipulations. Efficient brain-
computer interfaces use efficient neural signal recording devices 
that are able to record neural signals continuous over long 
periods of time through Positron Emission Tomography (PET), 
functional Magnetic Resonance Imaging (fMRI), functional 
Near-Infrared Imaging (fNIR), Electroencephalography (EEG) 
and Electrocorticographic (ECoG) methods. The paper presents 
critical review of the brain-computer interface system and 
robotics for manufacturing applications. 

 

Keywords- BCI, EEG, ECoG, Robotic Control, Human 
Threading 

I.  INTRODUCTION 
The need to respond to our environment without using our 

nervous system’s efferent pathways have initiated new 
interaction systems that can boost and speed up the human 
sensor-effector systems. The recent trend in the study of 
neuroscience has created avenues of improving the brain-
computer interface (BCI) and research has started exploring 
the vast applications in different fields that can benefit from 
such improvements on the BCI system. The many applications 
include mechatronic systems control and robotics, 
communication, neuroprosthetics, environmental control and 
electronic device coordination and control [10].  
 

Robots are employed in variety of applications and are 
available in a wide range of configurations.  Recent academic 
researches have been aimed at improving the usage of robots 
using advanced control methods. These advanced control 
methods include model-based techniques for adaptive control 

[32, 33], intelligent control methods using computational and 
neurodynamic techniques [34, 35] modelled to predict human 
cognitive states.  There have been varying degrees of success 
demonstrated in the use of neuroscience in robotics and the 
applications of the several advance methods are often 
restricted to development of commercial systems [25]. 
 

There are millions in the world who are suffering from 
severe motor dysfunctions with or without lower and upper 
extremity impairments. For a person with such motor 
dysfunction, it is almost impossible to interact with their 
environment. Efficient robotic systems that can integrate a 
sensory subsystem, brain-machine interface and provide 
autonomous or semi-autonomous movements are systems that 
are desired by such individuals as their scalp electric potentials 
can be exploited to their advantage [9]. Parikh et al [18] 
provided an integrated solution for motion planning and 
control with human inputs that includes interactions from the 
user’s brain with the controller in generating commands for 
controlling a wheelchair [18]. Mazo [16] in his work 
demonstrated the possibility of controlling a wheelchair using 
head movements, signals from electro-oculography and other 
sensors [16].   
 

The Non-invasive EEG-based brain-computer interface 
(BCI) provides an integrated communication channel for 
individuals who do not necessarily require their motor 
function capabilities to interact with the environment around 
them. They can interact with external world by controlling 
devices such as a wheelchair, robotic arm and computer. The 
brain-computer interface is also useful to able-bodied human 
beings for interaction with media applications, virtual 
environment and games. Most of the brain-computer interface 
research has been carried out on trial-based continuous control 
systems. The trails require that the participants maintain a 
sustained attention and regulate their brain activities in order 
to obtain the desired results. The trail-based system has 
prompted the development of self-paced or asynchronous 
system for continuous BCI evaluation. The self-paced system 
differentiates between “Intentional Control” state and “No 
Control” state of the human mind [20]. 
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To maximize human-machine interaction, Human 
Threading TM technique has been developed to merge the 
observations made in human cognitive system, neuro-
anatomical structures, finite-state machines and their 
associated relationships [15]. This technique is used to clear 
the uncertainties in the physiological inefficiencies that exist 
between human beings and machines. The concept of using 
interwoven technological designs in current researches 
involving cognitive neuroscience, electrical engineering, 
computer science, psychology, mechatronic systems and 
robotics may provide an unlimited array of artefact creation if 
they follow particular guiding principles in contrast to design 
science.  
 

The Human Threading TM system consists of recursive 
linear systems. These include the observation of human 
interaction with a machine, the design of an efficient system of 
interaction between human being and machine and the output 
system for the new relationship formed between human beings 
and machines at the least cost and high operational efficiency. 
The efficiency of the Human Threading TM methodology relies 
on its ability to combine measurements from functional 
Magnetic Resonance Imaging (fMRI), neural firings, 
Electroencephalography (EEG), infrared spectral analysis, 
Transcranial Doppler Sonography (TDS), interaction-based 
time complexities and galvanic skin response to refine human 
physiological dynamics and determine the efficient usage of 
the brain resources [15]. 

II. BRAIN-COMPUTER INTERFACE (BCI) 
The prime purpose of a brain-computer interface is to create 

a robust communication system that can interpret human 
intentions and cognitive emotions reflected by appropriate 
brain signals into control signals for robotic manipulations.  In 
addition, the BCI system is designed to increase the autonomy 
of individuals with severe motor disabilities by providing new 
communication pathways and control options [3]. The type of 
data handled by a BCI system according to the definition that 
was put together at the first international meeting on BCI 
systems “must not depend totally on the brain’s normal output 
pathways of peripheral nerves and muscles” [30].  The 
definition created reasonable bounds for harnessing signals 
with useful information regardless of their origin on the 
human body. The different methods used in tapping EEG 
signals rely on non-invasive EEG system and invasive EEG 
systems. The non-invasive EEG system uses a BCI system 
that analyses signals arising from non-evoked potentials.   
 

In contrast, BCI systems using evoked potentials achieve 
higher data transfer rates than the BCI system that works with 
un-stimulated brain signals. The inefficiency of evoked 
systems lies in the user being exhausted after long usage of the 
system as user is constantly faced with stimuli [5]. An 
invasive BCI system makes use of single-neuron activity and 
outputs signals with higher spatial resolution. The signals from 
the invasive system depend on the electrodes placed on the 
cortex and provide control signals that have many degrees of 

freedom. The limitation faced in the usage of EEG signals for 
communication and control lie in the fact that EEG-based BCI 
system has limited resolution and requires extensive training. 
The single neuron system also has significant clinical risks and 
limited stability. These limitations are overcome through the 
use of Electrocorticographic (ECoG) activity recorded from 
the surface of the brain.  ECoG activity allows users to control 
one-dimensional robotic signals rapidly and accurately. The 
identification and training in the usage of ECoG signals 
provides the platform for closed loop control system for one 
dimensional binary activity. It is also useful and stable for 
applications requiring open loop control such as two 
dimensional joystick movements [14].  
 

The transformation of brain activity into the direct control 
of computer components and mechanical hardware without the 
use of the peripheral nervous system is a system that is gaining 
attention to provide control options for paraplegic patients and 
robotics in general. The need for brain activity transformation 
has led to the development of methods that can acquire EEG 
signals and analyse them on temporal or frequency domain 
boundaries and translate them into appropriate control 
commands for hardware manipulation. The Brain-Computer 
Interface (BCI) also known as the Brain-Machine Interface 
(BMI) is a system that translates neural activity of the human 
brain into signals and commands that can be used in 
controlling machines and robots. The three main sub-systems 
of the BCI are: 
 

 The Electrodes:  These are the devices that are used 
for recording of neural activity from the brain. The 
recordings can be invasive or non-invasive, analog 
neural population signals in the form of scalp field 
potentials measured from the scalp. The readings and 
measurements of the field potentials can be restrictive 
in the manner of implementation of the potential 
functionality of a BCI. 

 End-effector: The end effector controlled by the 
neural signals measured from the scalp. The end-
effector can be anything from a robotic arm, visual 
signal, computer game, to a complicated prosthetic 
system. 

 The Algorithm: The algorithm analyses and interprets 
the measured neural signals into command signals. 
The algorithm forms the link between the measuring 
device and the end-effector. It determines which 
sections of the recorded neural activity that can be 
used for robotic movements and control and which 
commands that can be generated from the recorded 
activity. 

 
There have been substantial applications of BCI in the 

rehabilitation, treatment and care of disabled and paralysed 
patients with the intent of developing an efficient 
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communication channel for paralysed patients so as to restore 
and improve their social interaction with the outside world. 
The application is also extended to the restoration of 
movement capabilities of patients by using signals from neural 
activity to drive prosthetic devices [28].  

A. The EEG Electrode  
The motor pathways in the human body which the brain 

uses for communication and control of emotions and motions 
can be disrupted by many disorders such as brain-stem stroke 
and amyotrophic lateral sclerosis. Individuals with 
communication difficulty as a result of having no means of 
repairing damaged nervous systems can restore their 
communication capabilities through functional augmentation 
of the remaining pathways, data diversion around points of 
damage  and providing the brains with a whole new set of 
communication channels for communication and control. EEG 
activity can provide the platform for creating such 
communication channels and studies have shown that humans 
have the ability to control EEG phenomena. Single channel 
EEG-based BCI systems have a low data transfer rate that can 
be useful for individuals with severe motor disabilities. The 
development of multi-channel BCI systems increases the 
capacity of the EEG based communication systems thereby 
increasing the possibilities and applications in communication 
and control of robots [31].  

 
Brain signals are detected and measured using various 

techniques. The techniques include the recording of electric or 
magnetic fields, Positron Emission Tomography (PET), 
functional Magnetic Resonance Imaging (fMRI) and 
functional Near-Infrared Imaging (fNIR). Brain activity can be 
recorded at the scalp using EEG methods, at the cortical 
surface using electrocorticographic methods (ECoG) or within 
the brain through local field potentials, neuronal action spikes 
or neuronal potentials [7]. Efficient brain-computer interfaces 
use efficient neural signal recording devices that are able to 
record neural signals continuously over long periods of time. 
EEG recordings are made from electrodes placed on the scalp 
and the average electrical activity directly below the electrode 
is captured. The recordings reflect the electrical activity of 
synchronous firing of pyramidal cells. EEG signals are 
obtained through non-invasive techniques by placing Ag/AgCl 
electrodes on the scalp and contain data in a relatively narrow 
frequency band. Recent BCI research has introduced the use 
of intra-cortical extracellular microelectrodes which are 
inserted into the cerebral cortex [4]. 

III. SPREEDSHEET AND EEG ANALYSIS 
Numerical data are often used in analysis of robotic signals 

and commands. Spreadsheet becomes handy as its utilization 
cuts across various disciplines. The popularity of spreadsheet 
is as a result of its simplicity, short learning curve, functional 
power, attractiveness and high productivity in its usage. EEG 
data sets can be made of millions of rows and several columns 
corresponding to electrode recordings. Recent researches in 

neuroscience have demonstrated that EEG data sets can be 
used to classify electrodes. EEG data sets are so huge that it 
became necessary to develop and use tools such as TableLab 
to manage EEG data sets. TableLab expanded the common 
functionality of  spreadsheets by having huge text file 
partitioning, long table visualization and processing, random 
number generation, signal analysis and generation and EEG 
cluster analysis [1].   

IV. THE NEURAL CODE 
The growing interest in neuroscience has been how to make 

sense out of the signals that are measured from the human 
brain in expanding the field of robotics. The “rate code” which 
encompasses neural signal and uncorrelated noise model has 
been of the view that EEG data with the temporal structure of 
neural spike train are uncorrelated noise which is not suitable 
for brain data processing. Event-related potentials (ERPs) are 
recovered from averaging the noise signals experimentally 
over repeated trials [22].  The method assumes that variability 
reflects noise which if uncorrected with the right signal could 
be overcome by the brain through relevant averaging of the 
neural signals. The temporal code suggests that precise neural 
spike timing represents time-varying cognitive, sensory or 
motor signals. The temporal code has represented high 
frequency EEG components as signals instead of noise even 
during spontaneous activity [24]. 
 

The output of the neural spike train derived from the 
integrate-and-fire neuron model is usually regular. The 
transformation of the current signal into frequency modulated 
neural spike train that is based on the regular output is 
achieved using the integrate-and-fire neuron. As a result of the 
regular output from the integrate-and-fire neuron, the 
efficiency of the model may be limited due to the presence of 
discrete spectral components at the output frequency and its 
multiples [2]. The limitations associated with a regular output 
from the integrate-and-fire neuron model are eliminated in the 
Poisson neuron model having a random output. The 
randomness of the output improves the efficiency of the 
process that transforms the continuous somatic signal into a 
neural spike train. The Poisson output has a white noise 
component resulting from the randomness of the output. This 
is because it has no spectral noise components as opposed to 
the regular output model from the integrate-and-fire neuron 
[11]. 
 

Neural coding shaped through the understanding of noise in 
EEG data sets presents better precision through adaptive 
modelling of the white noise generated from the random 
output. Neural spike encoding and signal reconstruction 
process that is based on noise-shaping neural coding takes the 
somatic current signal )(ti  having passed through dendritic 
low-pass filter for band limiting is encoded into a neural 
impulse train )()( i

i
ttty    . A change in the input 

frequency at the electrodes leads to a linearly proportional 
change in the output frequency and the change transforms the 
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underlying somatic membrane potential  )(tv  into a Poisson-
like random neural spike train with additive white noise E  
expressed in (1).  

mf
fE 1)(   ,    (1) 

where mf  is the mean firing frequency. The system operates 
as a closed negative feedback loop in order to minimize the 
underlying somatic membrane potential [22] and represented 
in (2). 
 

  )()()(,)]()([)( thftytifdttiftitv  (2) 

 
Where   represents the convolution integral,  )(ti  represents 
the input current,  )(tif  represents total negative feedback 
current after a spike. The noise spectrum of the neural 
signal )( fN expressed in (3) as part of the output neural spike 
train )(ty  of the noise shaping neuron is illustrated by the 
simplest noise shaping filter )( fG  [23], 
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N

m
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f
wfEfGfEfN 

















 ,

4
sin2)()()()(        (3) 

Where N denotes the order of noise shaping that is associated 
to the negative feedback function )(thf  [22]. 

A. Neural code classification 
Human beings exchange information and communicate 

with each other through verbal and non-verbal means. The 
extension of non-verbal mode of communication to computer 
agents, robots and machines is becoming more and more 
interesting as its applications to our world is widening on daily 
basis. Research into emotion recognition, a non-verbal mode 
of communication has been investigated using speech, image, 
gesture, facial emotion and physiological signals. The 
implementation of emotion recognition technology using EEG 
signals and gestures has proven to add more weight in the 
advancements of control and coordination of robots in recent 
years. The EEG signals are generated through bio-potential 
signals on the scalp and gestures are generated by moving the 
wrist and the hand. The study of gestures recognition is crucial 
in understanding and recognising human emotion. Important 
to the study is the use of adequate EEG and action-recognition 
equipment to capture the bio-potential signals as emotions are 
caused or induced through the stimulus of objects in the 
environment [13]. 

 
The different states of emotion induced through the 

sensitive stimulus system implemented through pictures are 
standardised by the International Affective Picture System 
(IAPS). The system allows for classification of human mental 
condition. These conditions are tension/relaxation, 
pleasant/unpleasant and excitement/calmness [21]. The 
emotions can be used to generate EEG signals that are useful 
for robotic communication and control. Adaptations to events 

and tasks, decision making and social interaction of robots are 
highly dependent on the ability of human beings to embed 
human moods and emotional states in robots. It is critical in 
social interaction that emotional intelligence plays an 
important role in EEG signal adaptation and learning process. 
Researches in cognitive intelligence and neuroscience have 
demonstrated that emotions are major components of 
intelligent thinking and intelligent behaviour [19]. Renowned 
techniques use statistical-based [27] and wavelet-based [17] 
analysis of EEG signals for feature extraction; coupled with 
support vector machine (SVM) [6], fuzzy k-means [8] and 
fuzzy c-means [26]. The recognition of emotions using EEG-
based recognition system through artificial stimulation of 
emotional states removes the disadvantages introduced by 
other emotion recognition techniques as the technique has 
minimal influence on the central nervous system signals [19]. 
The implementation of the technique encompasses an EEG-
based user-independent emotion recognition system using 
features derived from higher-order-crossing analysis [12, 19]. 
 

V. EEG SIGNAL PERFORMANCE MEASURE 
Bit rate is the standard yard stick for measuring the data 

transfer rate of communications systems. The amounts of data 
that can be transmitted or communicated per unit time can 
show a direct relationship to how efficient and responsive that 
system would be. The Bit rate expressed in (4) depends on 
both speed and accuracy and as such EEG trainings having N 
possible trainings and each of the trainings has the same 
probability of being the one that the user desires. If the 
probability P that the desired training will actually be selected 
is always true and if each of the undesired trainings has the 
same probability of being chosen then the bit rate B for 
transferring such data is expressed as [5]:  

 











1

1log)1(loglog 222 N
PPPPNB   (4) 

 

VI. THE PERFORMANCE OF HUMANS AND THE 
MANUFACTURING ENVIRONMENT 

Recent research has shown that there is complete 
difference in the performance of human beings and as such 
there are slight variations in the EEG signals. This 
phenomenon makes the training algorithm for emotion 
recognition and physiological changes in the brain difficult 
and at the same time has prompted the development of 
learning and adaptation algorithms for EEG pattern 
recognition. The understanding of the sequence of changes is 
analogous with the understanding of techniques which 
includes training and pharmacological interventions of how 
these changes can be controlled. Recently, there is clear 
substantiation that interventions based on brain plasticity can 
fix deficits arising from degeneration, environmental stress, 
disease, psychiatric problems and trauma. The neurological 
basis for brain plasticity is the biochemical processes that are 
concerned with transmitting signals between neurons thereby 
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generating EEG signals. Brain plasticity is the process of 
change in synapses and rewiring or refining brain function can 
occur during the process [29]. The plasticity of the brain 
allows for neuroplasticity-based techniques which are useful 
in enhancing the effectiveness of cognitive recognition. 
 

The control of prosthetic devices and robotic arms using 
EEG signals has created a new level of communication 
between humans and machines that can be extended to the 
manufacturing environment. The search for better ways of 
coordination and control within and among robots has 
prompted the integration of brain waves into the 
communication system of robots. 
 

VII. CONCLUSION 
The response of the human brain to events in the 

environment has proven to be source of EEG signal generation 
for coordination and control of robots. The development of the 
communication interface between the human mind and 
machines has increased the chances of integrating back 
valuable human capital into the manufacturing environment 
and also to interact effectively with the environment.  
Adaptation and decision making in robots are improved 
through the social interaction that can be coordinated using the 
brain-computer interface. The brain-computer interface has 
made it possible for humans to communicate with machines 
using human thoughts, intentions, cognitive and affective 
states of the mind. The integration of human threading into 
machines and robot communication systems will improve the 
efficiency and performance of machines and robots in a 
human-coordinated environment. The brain-computer 
interface has provided the next level of communication 
between the human mind, robots and machines. 
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